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Abstract
The kinetic energy functional Ts[ρ] in a reference system of non-interacting
electrons is a key quantity in density functional theory. Approximating it as an
explicit functional of the electron density ρ is the object of continuous interest
since the earliest days of quantum mechanics (Thomas–Fermi electron gas
theory). A simple proof of the exact inequality Ts[ρA+ρB]−Ts[ρA]−Ts[ρB] �
0 valid for a special class of spin-compensated pairs of electron densities ρA

and ρB (vAB-representable pairs) is provided. The derived relation is discussed
to rationalize some of the results of the past attempts to approximate Ts[ρ]. It
is also discussed as a tool for deriving approximations to the functional Ts[ρ]
and/or the bi-functional T nad

s [ρA, ρB ] = Ts[ρA + ρB] − Ts[ρA] − Ts[ρB].

PACS numbers: 31.15.Ew, 31.10.+z, 31.20.Sy

1. Introduction

One of the key functionals in density functional theory (DFT) [1] is the kinetic energy
functional in a reference system of non-interacting electrons (Ts[ρ]) defined in the Levy
‘constrained search’ procedure [2]:

Ts[ρ] = min
�s−→ρ

{〈�s |T̂ |�s〉} (1)

where �s denotes the trial functions of the single determinant form.
In the conventional Kohn–Sham formalism [3], evaluation of Ts[ρ] as an explicit

functional of electron density is avoided owing to the use of its orbital-dependent equivalent.
Nevertheless, since the earliest days of quantum mechanics [4] up to now [5] many attempts
have been undertaken to find a good approximation to Ts[ρ] and associated with its potential
δTs [ρ]

δρ
. A good approximation to δTs [ρ]

δρ
, would make it possible to obtain ground-state electron

density from orbital-free calculations based on the direct application of Euler–Lagrange
minimization of the total energy functional without the need to introduce orbitals as is done in
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the Kohn–Sham formalism. Indeed, some of the developed approximations have been shown
to lead to very encouraging results for various molecular systems and materials [6].

A good approximation to Ts[ρ] as an explicit functional of electron density is also a key
ingredient in Cortona’s formulation of DFT based on subsystems [7]. In this approach, Ts[ρ]
is expressed using as a basic variable not the electron density ρ but a set of electron densities
{ρ1, ρ2, . . .} (electron densities of atoms in ionic solids in his case) adding up to the total
electron densities ρ. In a particular case of two subsystems described with ρA and ρB , Ts[ρ]
can be expressed in a hybrid way:

Ts[ρA + ρB] = Ts[ρA] + Ts[ρB] + T nad
s [ρA, ρB ]. (2)

Since Ts[ρA + ρB], Ts[ρA] and Ts[ρA] are universal functionals defined in equation (1),
equation (2) can be seen as the definition of a bi-functional T nad

s [ρA, ρB ] (referred to as
the non-additive kinetic energy bi-functional in this work). Using explicit orbitals to evaluate
Ts[ρA] and Ts[ρB] and an approximate explicit functional of the electron density to approximate
T nad

s [ρA, ρB ] leads to a computational approach which can be situated somewhere between
the Kohn–Sham formalism and the orbital-free strategy.

In the model of Gordon and Kim [8], which can be seen as non-variational precursor of
Cortona’s formalism, the bi-functional T nad

s [ρA, ρB ] is used to derive the interaction energy
of van der Waals complexes.

The models based on the idea of applying an ‘embedding potential’ representing the effects
of the microscopic environment to the electronic structure of a molecule (or another subsystem)
in condensed phase1 provide another area of applicability of T nad

s [ρA, ρB ]. Wesolowski and
Warshel noted that ‘embedding potential’ corresponds formally to freezing the electron density
of the environment in the variational calculations and used T nad

s [ρA, ρB] to show that the
embedding effective potential can be expressed exactly by means of universal functionals of
DFT and the electron density of the microscopic environment of the system under investigation
(ρB) [10]:

V eff
emb[ρA, ρB, r] =

∑
AB

− ZAB

|r − RAB
| +

∫
ρB(r′)
|r′ − r|dr′

+
δExc [ρA(r) + ρB(r)]

δρA

− δExc [ρA(r)]
δρA

+
δT nad

s [ρA, ρB]

δρA

(3)

where the first term shows the explicit form of the contributions of the atomic nuclei to the
effective potential and Exc[ρ] denotes the conventional exchange-correlation potential defined
in the Kohn–Sham formalism.

Approximations to T nad
s [ρA, ρB ] expressed as an explicit bi-functional of ρA and ρB were

used also by other authors in various contexts [11].
At the first glance, development of a good approximation to T nad

s [ρA, ρB] is an equivalent
task to the development of a good approximation to Ts[ρ]. It is worthwhile, however, to
note that T nad

s [ρA, ρB ] is a linear combination of Ts[ρ] calculated at three different electron
densities. Indeed, as pointed out earlier by Lacks and Gordon, no significant correlation was
found between the accuracy of a given gradient-free and gradient-dependent approximation
to Ts[ρ] and the accuracy of the corresponding T nad

s [ρA, ρB] [12]. The above observations
prompted our interest in studying, testing and developing approximations to T nad

s [ρA, ρB ]
directly. To this end, we developed a numerical procedure to test the accuracy of a given
approximate to T nad

s [ρA, ρB] [13–16]. This procedure is based on comparison between
electron densities derived from two types of minimization.
1 There is a vast literature concerning the ‘embedded molecule approach’. For pioneering papers in chemistry and
solid state physics, see [9].
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• One based on the minimization of the Kohn–Sham calculations:

min
ρ−→2NAB

EKS
v [ρ] (4)

where

EKS
v [ρ] = Ts[ρ] +

1

2

∫ ∫
ρ(r′)ρ(r)
|r′ − r| dr′ dr +

∫
v(r)ρ(r) dr + Exc[ρ]. (5)

• The other based on the double minimization of the total-energy bi-functional:

min
ρA−→2NA

min
ρB−→2NB

Ev[ρA, ρB ] (6)

where

Ev[ρA, ρB] = Ts[ρA] + Ts[ρB] + T nad
s [ρA, ρB ]

+
1

2

∫ ∫
(ρA(r′) + ρB(r′))(ρA(r) + ρB(r))

|r′ − r| dr′ dr

+
∫

v(r)(ρA(r) + ρB(r)) dr + Exc[ρA + ρB]. (7)

Note that, in the above formulae and throughout the text, the considered functionals and
electron densities correspond to the spin-compensated case. The comparisons between the
electron densities and other observables derived from the two types of minimization allowed us
to detect a very serious flaw of the regular gradient expansion [17] truncated to the second order.

The functional derivatives δT nad
s [ρA,ρB ]

δρA
and δT nad

s [ρA,ρB ]
δρB

obtained from this approximation were
significantly less accurate than those derived from the zeroth order expansion [15]. Moreover,
our tests showed that for a number of pairs of weakly overlapping electron densities ρA and
ρB there is, indeed, no correlation between the accuracy of a given approximation to Ts[ρ]
and T nad

s [ρA, ρB ] which is associated with Ts[ρ] via equation (2). We found also that the
numerical values of T nad

s [ρA, ρB ] calculated using the gradient approximation truncated to the
second order are negative for many considered pairs ρA and ρB .

In this paper, we show that T nad
s [ρA, ρB ] is non-negative for a certain class of pairs of

electron densities. The demonstration consists of two steps. In the first step, we define the class
of pairs ρA and ρB which will be labelled vAB-representable. In the second, we demonstrate
that the inequality T nad

s [ρA, ρB ] � 0 holds for vAB-representable pairs of spin-compensated
electron densities. In the final analysis, we discuss the practical benefits following from
the derived inequality. Throughout this paper, the functionals in the formulae are the exact
functionals. The symbols ρ0 and E0 denote the exact ground-state electron density and energy,
respectively.

2. vAB-representable pairs of electron densities

Definition. A pair of spin-compensated electron densities ρA and ρB such that
∫

ρA(r) dr =
2NA and

∫
ρB(r) dr = 2NB is vAB-representable if ρA can be obtained from NA exact Kohn–

Sham orbitals and ρB from the remaining NB orbitals corresponding to some external potential
vAB(r). Obviously ρ0 = ρA + ρB .

We use the term ‘a vAB-representable pair of electron densities ρA and ρB’ to avoid
confusion with a ‘pair of v-representable [1] electron densities’. We note also that (NA+NB)!

NB !NA!

vAB-representable pairs can be generated for each particular potential vAB .
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According to the above definition, the construction of a vAB-representable pair for a given
external potential vext is quite challenging a task because it involves obtaining exact Kohn–
Sham orbitals corresponding to vAB = vext. However, vAB-representable pairs ρA and ρB

can be easily constructed from Kohn–Sham orbitals obtained using an approximate exchange-
correlation potential Ṽxc. In such a case, vAB cannot be identified with the external potential
vext. The two quantities differ by more than just a constant. vAB includes also the difference
between the approximate (Vxc(ρA + ρB)) and the exact (Ṽxc(ρA + ρB)) exchange-correlation
potentials calculated at ρ = ρA + ρB .

Theorem. For vAB-representable pairs of electron densities ρA and ρB

T nad
s [ρA, ρB] � 0. (8)

The above theorem can be written equivalently as

Ts[ρA + ρB] − Ts[ρA] − Ts[ρB] � 0. (9)

Proof. Let vAB denote the external potential generating the electron densities ρA and ρB and{
φAB

i , i = 1, NAB

}
are the corresponding Kohn–Sham orbitals. The vAB-representable pairs

ρA and ρB can be obtained as

ρA = 2
NA∑
i=1

∣∣φAB
fA(i)

∣∣2
ρB = 2

NB∑
j=1

∣∣φAB
fB(j)

∣∣2
(10)

wherefA(i), i = 1, NA is a pointer choosing NA orbitals yielding ρA and fB(j), j = 1, NB is
a pointer choosing NB orbitals yielding ρB .

The kinetic energy Ts[ρ0] = Ts[ρA + ρB] can be derived from the Kohn–Sham orbitals
φAB

i :

Ts[ρ0] = 2
NAB∑
i=1

〈
φAB

i

∣∣∣∣−1

2
∇2

∣∣∣∣φAB
i

〉
. (11)

The summation in the above formula can be split into two components:

Ts[ρ0] = 2
NA∑
i=1

〈
φAB

fA(i)

∣∣∣∣−1

2
∇2

∣∣∣∣φAB
fA(i)

〉
+ 2

NB∑
j=1

〈
φAB

fB(j)

∣∣∣∣−1

2
∇2

∣∣∣∣φAB
fB(j)

〉
. (12)

Following the Levy constrained search definition of Ts[ρ]:

2
NA∑
i=1

〈
φAB

fA(i)

∣∣∣∣−1

2
∇2

∣∣∣∣φAB
fA(i)

〉
� Ts[ρA] (13)

2
NB∑
j=1

〈
φAB

fB(j)

∣∣∣∣−1

2
∇2

∣∣∣∣φAB
fB(j)

〉
� Ts[ρB]. (14)

The above two inequalities combined with equation (12) lead to the inequality:

Ts[ρ0] = Ts[ρA + ρB] � Ts[ρA] + Ts[ρB]. (15)

As a result we obtain

T nad
s [ρA, ρB] � 0 (16)

which ends the proof. �
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3. Discussions and conclusions

In the final part, we underline the following practical issues relevant to the above inequality.

• Following our observation that vAB-representable pairs of electron densities can be
constructed from Kohn–Sham orbitals obtained even with an approximate exchange-
correlation potential, the inequality T nad

s [ρA, ρB] � 0 might be used as an easy tool to
detect flaws of any given approximation to Ts[ρ].

• The simplest approximation to T nad
s [ρA, ρB ] based on the zeroth order term in the regular

gradient expansion T (0) satisfies the derived inequality for all pairs of electron densities
(for vAB-representable and not vAB-representable pairs alike). This follows from its
explicit analytic form [10]:

T nad(0)
s [ρA, ρB] = CT F

∫ (
(ρA + ρB)5/3 − ρ

5/3
A − ρ

5/3
B

)
dr � 0 (17)

where CT F = 3
10 (3π2)2/3. This functional can be considered, therefore, as a good starting

point for constructing better approximations.
• The contribution of the second-order term in the regular gradient expansion T (2) is non-

positive for all pairs of electron densities (for vAB-representable and not vAB-representable
pairs alike). This follows from its explicit analytic form [10]:

T nad(2)
s [ρA, ρB] = − 1

72

∫ |ρA∇ρB + ρB∇ρA|2
ρAρB(ρA + ρB)

dr � 0. (18)

The violation of the T nad
s [ρA, ρB ] � 0 inequality explains the very poor performance of

this functional detected in our earlier studies [15]. We recall now that T (2)
s [ρ] is closely

related to the von Weizsaecker functional T W
s [ρ] [18]

(
T W

s [ρ] = 9T (2)
s [ρ]

)
, which is

the exact kinetic energy functional for one- and two-spin-compensated electron systems.
Using T W

s [ρ] to approximate T nad
s [ρA, ρB ] leads, therefore, to a gross violation of the

derived inequality. T W
s [ρ] has been used by many authors as the starting point for

development of better approximations of the general form [19]:

Ts[ρ] ≈ T W
s [ρ] + small correction. (19)

Our result suggests that the contribution of the ‘small correction’ to T nad
s [ρA, ρB ] must

be non-negative and must overweight the negative contribution due to T W
s .

• The inequality T nad
s [ρA, ρB] � 0 provides a formal justification for a good performance

of our generalized gradient approximation type of T nad
s [ρA, ρB] [16] for small overlaps

between ρA and ρB . The gradient-dependence of this functional is such that at small
electron densities, i.e. where negative contributions to T nad

s [ρA, ρB] due to the second-
order term might prevail, they are smoothly cut out.

For practical reasons, we limited the scope of this work to pairs of spin-compensated pairs
of vAB-representable electron densities. Construction of a similar inequality for other cases is
not straightforward. The condition that each component ρA and ρB contains an integer number
of electrons cannot be dropped because this is one of the conditions of v-representability a
key element in our proof. Dropping the condition

∫
ρA dr = 2NA and

∫
ρB dr = 2NB and

replacing it by a weaker one
∫

ρA dr = KA and
∫

ρB dr = KB (where K can be either odd or
even) could be useful. To derive an analogue of the inequality T nad

s [ρA, ρB ] � 0 valid for two
vAB-representable pairs of spin densities, an extension of the kinetic energy functional to the
spin densities must be added to our previous considerations. The Olivier–Perdew construction
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[20] allows one to derive the spin-density functional from a given density functional of the
kinetic energy

Ts[ρ
up, ρdown] = 1

2 (Ts[2ρup] + Ts[2ρdown]). (20)

Below, we discuss only a particular case of such a generalization. Applying the Oliver–
Perdew construction to such a system partitioned as that ρup = 1

2ρ and ρup = ρdown

provides a tempting case because the exact analytic form of all relevant functionals
i.e. Ts[ρ] = Ts[ρup, ρdown], Ts[ρup, 0], and Ts[0, ρdown] is known: Ts[ρ2e] = T W

s [ρ2e],
Ts[ρup(1e), 0] = T W

s [ρup(1e)] and Ts[ρdown(1e), 0] = T W
s [ρdown(1e)]. Unfortunately, inspecting

the analytic form of T W
s [ρ] shows that the analogue of the inequality T nad

s [ρA, ρB ] � 0 takes
a trivial form in this case: Ts[ρ(2e)] − Ts[ρup,(1e), 0] − Ts[0, ρdown,(1e)] = 0 which does not
lead to any new physical insights.
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